4者は、量子力学の原理に基づきあらゆる盗聴や解読に対して安全な暗号通信を実現する「量子暗号通信技術」と、原本データを無意味化された複数のデータ片(シェア)に変換することで安全なデータ保管を実現する「秘密分散技術」を組み合わせた「分散保管技術」を開発し、大容量ゲノム解析データのバックアップへの適用を実証した。開発したデータ分散保管技術は、データの通信および保管の双方にて、情報理論的安全性を担保することができるという。量子暗号通信技術により、あらゆる盗聴・解読に対して安全な通信を実現すると同時に、秘密分散技術により、システム障害や自然災害等で保管データの一部が棄損あるいは漏洩しても、元データの機密性は確保され、かつ、棄損せずに残った保管データから元のデータを復元することが可能となる。
ゲノム解析データの保管の際は、「XOR閾値秘密分散法」と呼ぶ高速秘密分散を可能とするアルゴリズムにより、元のゲノム解析データに対応した複数のシェア(無意味化されたデータ)に分散し、 量子鍵配送によって生成・蓄積した暗号鍵を用いたワンタイムパッド暗号通信によって、各シェアを異なる拠点に分散保管する。また、ゲノム解析データを復元する際は、同様のワンタイムパッド暗号通信によって各シェアを異なる拠点から1つの拠点に集め、「XOR閾値秘密分散法」アルゴリズムによって複数のシェアから元のゲノム解析データを復元する。
この開発において、シェアデータの保存先を、各拠点におけるディスクのセクタ単位で指定することで高速にシェアデータの読み書きを行う「ダイレクトアクセス技術」、量子鍵配送によって生成した暗号鍵を大量に蓄積し、ソフトウェアの並列実行によって、情報理論的安全が保証されるワンタイムパッド暗号を高速に実行する「並列ソフトウェア技術」等を用いて秘密分散およびワンタイムパッド暗号通信の高速化を実現した。これらの高速化技術を活用することで、情報理論的安全性を確保しつつ、大容量のゲノム解析データを実用的な時間で分散保管する技術を確立している。
東芝、ToMMo・東北大学病院、およびNICTは、開発した分散保管技術を利用し、東芝ライフサイエンス解析センター(LSA)、ToMMo、東北大学病院の3拠点でゲノム解析データを分散保管する実証実験を実施した。まず、ToMMoにおいてゲノム解析データに対してNICTが開発した秘密分散技術を用い、3つのシェア(シェアA、シェアB、シェアC)を計算。その後、シェアAはToMMoにて保管、シェアBは東芝の量子暗号技術による暗号化伝送で東北大学病院に伝送・保管され、シェアCは同様に量子暗号技術による暗号化伝送でLSAに伝送・保管される。オリジナルの解析データを復元する場合、3つのシェアのうち2つのシェアをToMMoの拠点に集め、秘密分散技術を利用して復元する。
1検体のゲノム解析データ(約80GB)を対象に、分散保管および復元に要する時間とスループットを測定した結果、分散保管処理時は約30分(356Mbps)、復元処理時は約21分(502Mbps)だったという。これをToMMoにおける最小バックアップ単位(100検体)に換算した場合、およそ50時間となり、現状のテープ等のメディアを用いたゲノム解析データの遠隔保管地から物理的に運搬するユースケースと比べて実用的な速度に相当するという。