この実験では、NTTの開発した「空調最適制御シナリオ算出技術」を、夏季のJR新宿ミライナタワーにおけるオフィスロビーの空調運転へ適用した。この技術は、人・モノ・環境の状態再現と未来予測により都市における新たな価値創造を目指した「街づくりDTC」の取り組みの一環として、NTTスマートデータサイエンスセンタで開発した技術。なお、この技術には、移動体を含む地理空間の位置情報基盤である「4Dデジタル基盤」を用いているという。
この技術では、以下の処理に基づき、最適な空調運転シナリオを算出している。特に、コンピューター流体力学と機械学習の組み合わせによって、短期間での計測による少量データからの快適性予測を実現している点と、深層強化学習を用いることにより、ビル内の広い共用空間において生じる、空調が室内環境に影響を及ぼすまでの時間遅れも考慮したフィードフォワード制御を行う点が特長だとしている。
- 来館者の数、外気温、空調運転状況、室内の温湿度を用いて、機械学習技術とコンピューター流体力学を組み合わせることで、快適性指標であるPMVを少量の計測データより予測
- 予測されたPMVを基に最適な空調運転設定を算出するという処理を1日分繰り返し実施しながら最適化する深層強化学習を用いて、対象日における最適な空調運転シナリオを算出
上記によって算出された空調運転シナリオを適用したところ、PMVを快適な範囲内に保ちつつ、空調機が用いる消費エネルギー量(冷水熱量)を、従来の同気候日における空調運転時と比較し、約50%削減できることを確認したとしている。